Índice |
II. Experiência aleatória |
IV. Modelos de Probabilidade discretos e contínuos
III. Probabilidade
Parte 6 de 47
2. Interpretação frequencista de probabilidade
Se em muitos lançamentos de uma moeda a frequência de caras observadas se aproxima de 1/2, então dizemos que a probabilidade da saída de cara num próximo lançamento será de 1/2.
Define-se probabilidade - definição frequencista - de um acontecimento A e representa-se por P(A), como sendo o valor obtido para a frequência relativa com que se observou A, num grande número de realizações da experiência aleatória.
O conceito frequencista de probabilidade, em que interpretamos a probabilidade de um acontecimento da forma anteriormente considerada, não nos permite obter valores exactos para a probabilidade. No caso da moeda, poderíamos continuar a lançar indefinidamente a moeda, que nunca obteríamos o valor exacto para a probabilidade da saída de cara.
Podemos, no entanto, idealizar o seguinte modelo probabilístico, para a experiência aleatória que consiste em lançar uma moeda e observar a face que fica voltada para cima:
Face
|
Cara
|
Coroa
|
Probabilidade
|
1/2
|
1/2
|
Sugere-se este modelo na presunção de que seria este o comportamento da frequência relativa dos acontecimentos elementares associados à realização do fenómeno aleatório em estudo.